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Many papers  have been devoted to the analys is  of acous t ic  s t reaming  in boundary l aye r s  [1-7]. The 
acoust ic  s t reaming  p rob lem has been solved between para l le l  walls  [1], in a tube [2], around c i rcu la r  el l ipt ical  
cy l inders  [3, 4], and around an a r b i t r a r y  curvi l inear  in te r face  [5, 6]. In all  these papers ,  however ,  the influence 
of the the rma l  conductivity of the fluid on the acoust ic  s t reaming  is neglected (with one obvious exception [2]). 
Moreover ,  all  the papers  essent ia l ly  t r e a t  the special  case of s t reaming  in a wave field contiguous with the 
boundary. In the p resen t  a r t i c l e  we de te rmine  the acoust ic  s t reaming  in a boundary layer  in the field of an 
obliquely incident plane wave in a v iscous  heat-conduct ing medium. 

Slow s t reaming  in a boundary layer  is  desc r ibed  by the well-known equation [5, 7] 

p0v, AV~ --  F = 0, (1) 

F = -p0  ( (Vl.v)Vl + V~(v .vl)>, 

in which P0 is  the density of the fluid in the undisturbed state,  V~. is  the acoust ic  s t reaming  veloci ty ,  v is the 
kinematic  v i scos i ty  coefficient,  and the angle brackets  denote t ime  average .  

The express ion  der ived  by Konstantinov [8] for the f i r s t -approximat ion  acoust ic  field V l can be wri t ten 
as  follows for  smal l  graz ing angles of the incident wave: 

V 1 = V l a  + Vln -~- V1B + VIT; 

Via = kll M (e x -- ~lez), Vin = kn Mvn e ~" (ex :-- ~1%), 

V,B----Mc0, exp [i (~z-~ ~B ~" ~-)1 ( - -~  ]/*2ex--k,,ez), (2) 

where  Via,  Vlii a r e  the ve loc i t i es  in the longitudinal incident and re f lec ted  waves,  VIB is the veloci ty  in the 
v i s cos i t y  wave, V1T is the veloci ty  in the the rmal  wave, ex, ez  a re  unit v ec to r s  of  a Car tes ian  coordinate 
sys tem with i ts  axis  Ox d i rec ted  along the boundary,  kit =(7/c is the longitudinal wave number ,  and f l -1  ~ - t  
a r e  the thickness  sca les  of the v i scous  and the rma l  acoust ic  boundary layers .  

The raoduli ~II, rBJ ~s and phases  c, aii, ~B, ~T of the ref lect ion coeff icients  a r e  given by the express ions  

"V4~l ~ -{- �9 ~ 2~I@ 
v~ = 01 �9 ~)2 ~ ~l' ' ~0. = arctg 2~V-- ~P ' 

q)  = (v - t) 1 2/~-~ ' V 2 - ~  . ( 3 )  c ' - 7 - - '  v~ = (? -- ]) Z~ ]ffv~ T 2vn cos ~. + i, 

VnSin~n -o~ V 2 
r = arctg i ~- % s i n T  a 2' VB = X~ Vn -t- 2v~ cos ~, ~ i, 

where  ~ is  the adiabat ic  exponent,  ~ r  is the the rma l  diffusivity, and �9 is the c r i t i ca l  angle of Konstantinov [8]. 

Beginning with the work of Sd~lichting [3], the theory  of acoust ic  s t reaming  near  boundaries  has been 
based on the boundary- layer  equations.  According to this theory,  t e r m s  of o rde r  g r e a t e r  than 1/~l (where l 
is  the space scale  of the acoust ic  field) a r e  re ta ined in all the mathemat ica l  express ions .  However ,  to obtain 
the dependence of the acoust ic  s t reaming  veloci ty  on the graz ing angle of the incident  wave the indicated approx-  
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imat ion is  inadequate.  We the re fo re  r e t a in  t e r m s  th rough  o rde r  l / i l l  inclusively  in the f i r s t - app rox ima t ion  
e x p r e s s i o n s  for the acous t i c  field (3). 

In a boundary l aye r  the tangent ia l  component  of the force  F is  known to be much l a r g e r  than the normal  
component  [5], i .e . ,  we can a s s u m e  that  F=  Yxex. In this  case  V z i s  a lso  d i rec ted  along the axis  Ox, and 
V~. =V~(z)ex. to fac i l i ta te  the ensuing calculat ions in the case  of mul t ip le -wave  p r o c e s s e s  i t  i s  p rac t i ca l  to 
wr i te  Eq. (1) i n m a t r i x  form.  To do so we int roduce the ma t r ix  of  pa i r  in te rac t ions  

Fan 

/F~a 

Fan Fas Far 

Fnn F,~ Fn~ 

I 
F~,~ FT. F~v !" 

All except  the diagonal  e l em en t s  of this m a t r i x  cha rac t e r i ze  the fo rces  c rea ted  by in te rac t ion  of different  wave 
modes .  The diagonal  e l emen t s ,  on the o ther  hand, desc r ibe  the fo rces  c rea ted  by se l f -ac t ion  of the waves:  

-- , z Vlax(V .Vlr~)} ' F,m - -  --P0\ (Via" V) 1 11,x § 

Fna-~- --~)0<(Vln'V)Vlax + Vlnx(V.Vla)>, 
ffaa -~ --,o0<(Vla'V)Vxax --~ Vlax(V "Via)>. 

With the introduction of the m a t r i x  S the acous t i c  s t r eaming  equation (1) now takes  the f o r m  

,zt-~ V2. =--(PoV) -z![Sil• ~ (4) 

V2T t 

where  V2a, V~II, V2B, and VzT a r e  the x components  of the acoust ic  s t r e a m i n g  ve loc i t i e s  c rea ted  by in teract ion 
of the cor responding  wave with al l  other  wave modes ,  including se l f -ac t ion .  

Intograt~ng Eq. (4) with the boundary conditions V~]~=0 = 0, dVJdz',~_,.~o = 0,we obtain 

V2a -~ a) [fly B ((o z sin Q~ - sin %) + vT (o3~ sin QT - -  sin ~T)], (5) 

V2n = corn v, [r sin (Q~ --  qOn) - -  sin (q~T --  q~)] --  oJvnv~ ~1 [r sin (Q~ - q~n) - 

___~ i ' __ , 3 

- -  2Pr ' / '  cos (O, - -  O, + 43--n)] + [2Prl / '  cos (q~, - -  % + 3 n) --  

3 

- -  -~" VB(I - -  O)i) T X'-;- (i + Pr-1) + 

3 
t )  s in(q)~  - -  q~T-- = + q~B QT 

o 

A~ = ~z + qD,, o~ = k-~v' 

w h e r e  A i s  the  a m p l i t u d e  of  the i n c i d e n t  f i e ld  and P r = v / w r  i s  the Prandt l  n u mb er .  

The s t reaming  veloci t ies  on the outer  side of the boundary l ayer  a re  determined f rom (5) as  z--~o: 

Vza = - -  to [~v~ sin r + vT sin q%], V2~ = ~ [VnV~ sin (%~ - -  ~T) ~- 

V ~ ~ [ 2 P P / ~  cos ~ ) - .  + "qv.v~ s i n  (q~  - -  r 2,  = ~ Vr/;~ (qga - -  q)~ "+- 3 

_ _  3 = o~v. l~.~ sin(~_ _ q~ ' _ _  ( 1 -  Pr)sin ( ~ - - q ~ ,  + ~ n)], V2~ . . - -  ) (6) 

- -  ~,Vn s i n  ~ .  - -  q~n - -  - -  -~  v~ -~- g ,  ( I  + P r - ~ )  ~ 2 P r  - z / ~  c o s  ~ - -  q~ - -  
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3 } ----3u) - (Pr-~- 4 t) sin (~" -- q)~ -- X- :~)]); 
(6) 

the mass  flow ra te  i s  given by the express ions  [7] 

U = V~ + Vu, V= = <(~l.V)Vl>, 

in which St is  the d isplacement  vec to r  of the fluid pa r t i c l e s  in the acoust ic  wave, ~1 = ~ Vl dt. Using express ions  

(2) for  V1, we obtain the following for Vt r  on the outer  side of the boundary layer :  

Vtr = Vtr (z) e~; Vtr = A s [ 1 -}- 2 v= cos ~, ~- v2]. (7) 

Express ions  (6) and (7) t he re fo re  enable us to calculate the acoust ic  s t reaming  veloci ty  for a r b i t r a r y  
grazing angles of the incident wave. We have ca r r i ed  out a numer ica l  computation for s t reaming in a i r ;  the 
r e su l t s  a r e  given in Fig. 1, in which it is seen that  the flow veloc i ty  changes in the vicini ty  of the cr i t ica l  angle 
of  Konstantinov. The genera l  behavior  of the veloci ty  with var ia t ion  of the f requency coincides with the 
behavior  of the coefficient  of re f lec t ion  of acous t ic  waves f rom a per fec t ly  r igid wall [8]; the higher  the f r e -  
quency the h igher  the r a t e  of change of veloci ty .  The dashed line r ep re sen t s  the veloci ty  U calculated a c c o r d .  
ing to express ions  in [3, 5]. It  follows f rom the graph that  the acoust ic  s t reaming  veloci ty  for  steep oblique 
wave incidence is  much g r ea t e r  than the  s t r eaming  veloci ty  for  grazing incidence.  This conclusion is supported 
by published exper imenta l  invest igat ions.  F o r  example,  i t  has been shown [9] that i f  the acoust ic  wave is  
incident at a s teep angle with the boundary, the m a s s - t r a n s f e r  p roces s  in the acoust ic  field, being de te rmined  
mainly by the acous t ic  s t reaming ,  p roceeds  much more  rapidly than for  a boundary para l l e l  to the d i rec t ion of 
wave propagation.  

We now find an analyt ical  express ion  for the acoust ic  s t reaming  veloci ty  in the case  ~ >>~. Here  the 
v i scos i ty  and t he rma l  conductivity of the fluid do not affect  the ref lec t ion  coefficients:  

k2 
vT = ( ?  - -  t )  '--!i" ~ = - -  ~, 

and f rom (6) and (7) we obtain 

( ( v -  ~) I (s) 
4 A '  ( 9 )  

c 

It  follows f rom (8) and (9) that V z and Vtr  do not depend e i ther  on the grazing angle ~7 or  on the acoust ic  f r e -  
quency, whereas  for  grazing angles near  the cr i t ica l  angle of Konstantinov the s t reaming  veloci ty  is  a function 
of these va r i ab l e s .  
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A number of experimentally observed phenomena (the magnetoviscosity effect, i .e.,  increase of the 
viscosity of a ferromagnetic  suspension in a magnetic field [1], and the entrainment of a polar fluid by a non- 
steady magnetic field [2-4]) can be explained on the basis of the notion of internal rotations and the associated 
internal friction as a mechanism of momentum transfer  from the field to the medium [5-8]. In line with the 
expanding study of the influence of internal rotations on macroscopic fluid motion there is also considerable 
in teres t  in the development of mathematical models of asymmetr ic  polarizable and magnetizable media [5, 
9-12]o 

In the present  ar t ic le  we show that the influence of internal rotations under definite conditions not only 
leads to a modification of the momentum-transfer  law, but also proves significant in hea t - t ransfer  processes  
and, in the case of multi component fluids, mass - t rans fe r  processes  as well, giving r ise to a highly specific 
"microconvective" t ransfer  mechanism. 

Inasmuch as the significance of the internal-rotat ion concept is part icularly highlighted in the case of 
suspensions and colloidal solutions, we discuss a certain volume of a suspension in a system S', in which 
macroscopic motion does not take place. This system rotates relative to the laboratory frame S with an 
angular velocity 12 = (1/2)rotv (rot = curl). In fhe system S' the part icles of the suspension rotate with a veloc- 
ity R =~0-12, where ~ is their  rotational velocity in the system S. The rotating part icles together with the 
fluid entrained by them through viscosity induce a local microconvective heat t ransfer  in the system S' in the 
case of a nonuniform temperature  distribution in the fluid. When the distance between the part icles is commen- 
surate with their  sizes and the lat ter  a re  large,  a possible outcome of the interaction of the temperature 
fields of the individual microvort ices  and heat t ransfer  between them is a macroscopic heat flux qr,  which 
competes with the conductive heat flux q0- 

We estimate the ratio qr/q0 on the basis of the heat- t ransfer  equation v~TT =~v~T, applying it to the 
individual microvortex,  in which case it is necessary to adopt as the character is t ic  space scale the micro-  
vortex radius lo. Then v~R/ 0 ,  and: 

Minsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 88-93, May- 
June, 1978. Original ar t ic le  submitted March 31, 1977. 
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